Thema 11: Lineare Einfachregression

Ein universelles Instrument zur empirischen Untersuchung von theoretischen Zusammenhängen (Falsifikationsversuche von Hypothesen)

Anleihenkurse und Zinssatz

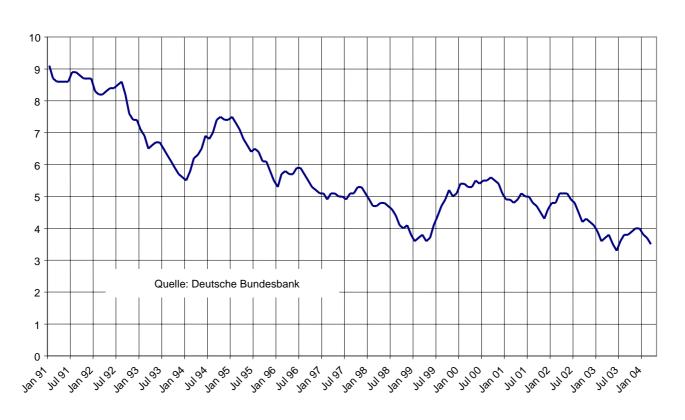
- Bedeutende Einflussgröße für Kursentwicklung von Anleihen ist der Zinssatz
- Kenntnis vom Zinssatz lässt Rückschluss auf die Kursentwicklung von Anleihen zu
- Kann man das Zinsniveau erklären und prognostizieren?

Motivation

- Kauf einer Anleihe (5,625) zu 113,75 mit einer Restlaufzeit von 24 Jahren wegen hoher Rendite (4,661%) und Verkauf nach einem Jahr.
- Problem: Zinsänderungsrisiko und damit Kursrisiko
- 1. Marktzinssenkung um einen Prozentpunkt: Verkaufskurs: 130,18 € (zum Zins Kursgewinn)
- 2. Marktzinserhöhung um einen Prozentpunkt:
 Verkaufskurs: 99,54 € (zum Zins Kursverlust)

In der Praxis?

WU0017 Umlaufsrenditen inländischer Inhaberschuldverschreibungen / Insgesamt



Beispiel:

Zusammenhang zwischen Zinsniveau und Inflationserwartungen

- Irving Fisher (1930) behauptete:
 - Gläubiger fordern:
 - a) eine Entschädigung für den Konsumverzicht b) einen Ausgleich für die erwartete Inflation
- Beispiel: Gläubiger bekommt 5% Zins, die Inflation beträgt 10%, er kann sich nach einem Jahr 5% weniger Güter kaufen!!!!
- Also wird der Gläubiger mehr als 10% Zins verlangen: Der geforderte Zins ist eine Funktion der erwarteten Inflationsrate!!!

 $i = f(\pi^e)$ z.B. als lineare Funktion

 $i = m \cdot \pi^e + b$ (Excel: $y = m \cdot x + b$)

Gibt es den Zusammenhang auch in der Realität?

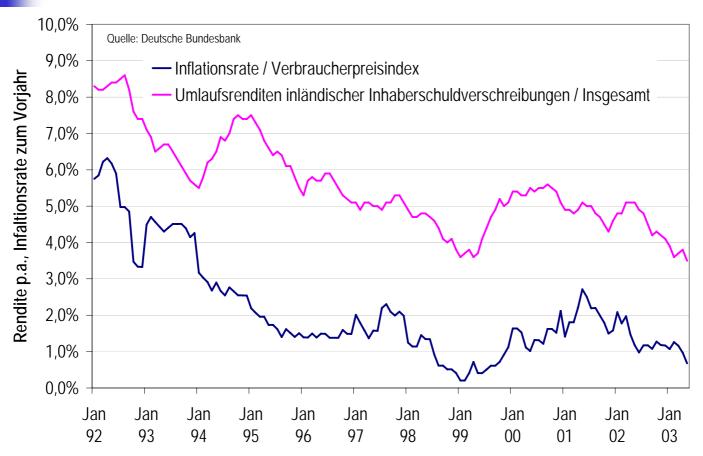
Das Bestimmtheitsmaß

- Das Bestimmtheitsmaß (R²) gibt Auskunft darüber, wie "gut" die Erklärung in der Praxis passt.
- R² = 1: Theoretische Erklärung passt perfekt
- R² = 0: Kein Erklärungszusammenhang

Datenprobleme?

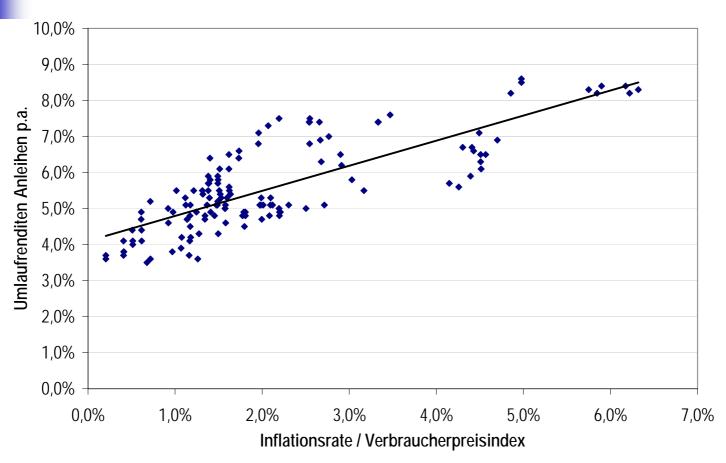
- Wo finde ich Daten über Zins und Preise?
 - http://www.bundesbank.de
- Bundesbank Zeitreihen:
 - Kapitalmarkt/Renditen und Indizes deutscher Wertpapiere
 - Konjunkturlage/Preise/Verbraucherpreisindex
- Datenaufbereitung
 - Diagramm: Zeitverlauf, Punktwolke

Zeitreihenverlauf



Finanzwirtschaft VI www.stendal.hs-magdeburg.de/project/konjunktur/Fiwi/index.html

HS Magdeburg-Stendal (FH)
Seite 8



Finanzwirtschaft VI www.stendal.hs-magdeburg.de/project/konjunktur/Fiwi/index.html

HS Magdeburg-Stendal (FH)
Seite 9

Lineare Gleichung

- Annahme: Linearer Zusammenhang zwischen Inflationsrate und Renditen
- Allgemeine lineare Gleichung
 - Aus $y_t = m x_t + b + \varepsilon_t$ wird mit Zins i, Inflationsrate π , Parameter m und b
 - $i_t = b + m \pi_t + \varepsilon_t$
- Lineare Einfachregression
 - i = abhängige Variable (Regressand)
 - π = unabhängige Variable (Regressor)
 - Regression von i auf π , beschreibt Abhängigkeit zwischen beiden Variablen
 - ε_t = Störgröße oder Residuen

- Lineare Regressionsfunktion
 i
 i
 i = b + m · π
 r
- Regressionskoeffizienten: m und b
- Residuen: Abweichungen zwischen beobachteten Werten und geschätzten Werten

$$\varepsilon_{t} = \dot{i}_{t} - \hat{i}_{t}$$

$$\sum_{t=1}^{n} \varepsilon_{t}^{2} = \sum_{t=1}^{n} (\dot{i}_{t} - \hat{i}_{t})^{2}$$

 Minimierung Summe Abweichungsquadrate mit Methode der kleinsten Quadrate

Lineare Einfachregression Stendal

 Mit der Methode der kleinsten Quadrate unbekannte Regressionskoeffizienten m und b berechnen (allgemein)

$$b = \frac{\sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$m = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

Lineare Einfachregression

 Methode der kleinsten Quadrate unbekannte Regressionskoeffizienten m und b berechnen

Summe	Summe	Summe	Summe	Summe	Anzahl
хi	yi	Xİ ²	yi²	xi yi	n
289,0%	762,9%	8,8%	44,6%	18,0%	137

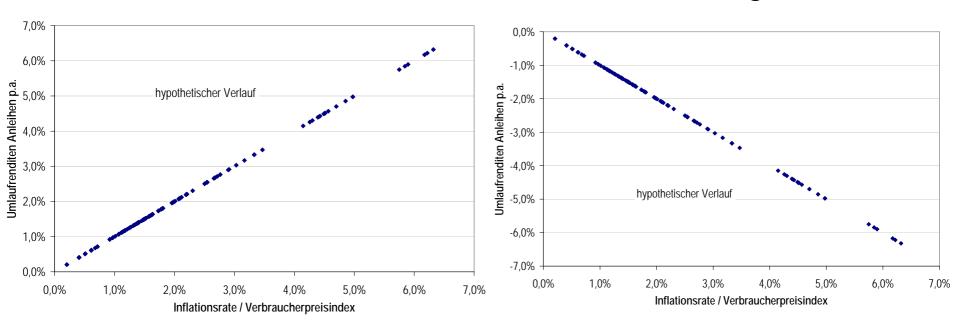
Geschätzte Parameter b 0,04 der Koeffizienten m 0,73

Geschätzte lineare $\hat{i}_t = b + m \cdot \pi_t$ Gleichung (speziell) $\hat{i}_t = 0.04 + 0.73 \pi_t$

Korrelation

Positive Korrelation Anstieg?

Negative Korrelation Anstieg?



Finanzwirtschaft VI www.stendal.hs-magdeburg.de/project/konjunktur/Fiwi/index.html

HS Magdeburg-Stendal (FH) Seite 14

Korrelationskoeffizient

- Korrelationskoeffizient ρ (griechisch: roh): Maß für den Zusammenhang zwischen zwei Zufallsvariablen
- Korrelationskoeffizient normiert $-1 \le \rho \le +1$

$$\rho = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \text{ Var}(Y)}}$$

$$\rho = \frac{\frac{1}{(n-1)} \sum_{i=1}^{n} (x_i - \overline{x}_i) (y_i - \overline{y}_i)}{\sqrt{\frac{1}{(n-1)} \sum_{i=1}^{n} (x_i - \overline{x}_i)^2 \cdot \frac{1}{(n-1)} \sum_{i=1}^{n} (y_i - \overline{y}_i)^2}}$$

 Bestimmtheitsmaß: Maß für die durch die lineare Regressionsfunktion gelieferte Erklärung der Variation der abhängigen Variablen aus der Variation der unabhängigen Variablen

$$r^{2} = \frac{SQE}{SQT} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$
$$= \frac{\text{erkl\"{a}rte Streuung}}{\text{zu erkl\"{a}rende Streuung}}$$

Mittelwert	Bestimmtheitsmaß	
y-	r ²	
5,6%	63,36%	
Summe	Summe	
erklärte Abw.	zu erklärende Abw.	
1,3%	2,1%	

Oder einfach mit Excel

Die Formel RGP liefert folgendes Ergebnis:

m	0,73	0,04	b
	0,04610416	0,001135443	
R ²	0,63646866	0,007733065	
F-Test	253,865195	145	
	0,01518121	0,008671044	

- Lineare Gleichung: $\hat{i}_t = b + m \cdot \pi_t$ $\hat{i}_t = 0.04 + 0.73 \pi_t$
- Geschätzte Gleichung erklärt ca. 63,6% der Variation der Renditen durch die Variation der Inflationsrate.
- Schlussfolgerung: Wir können einen Großteil der Entwicklung der Renditen durch die Inflationsrate abschätzen und somit auch die Entwicklung der Anleihekurse.

Prognose

Zwei Möglichkeiten:

1.
$$\hat{i}_t = b + m \cdot \pi_t$$
 = unverzögerte Schätzung

$$\hat{i}_{t+1} = b + m \cdot \pi_t$$
 = verzögerte Schätzung

Zu 1: Prognose der Inflation und dann des Zinses oder:

Zu 2: neue Schätzung mit "time-lag" (Verzögerung)

- Auer, L. von: Ökonometrie, Eine Einführung, Berlin u. a. 1999
- Baltagi, Badi H.: Econometrics, 2nd Revised Edition, Berlin u. a. 1999
- Bleymüller, J., Gehlert, G., Gülicher, H.: Statistik für Wirtschaftswissenschaftler, 11. Aufl., München 1998
- Harvey, Andrew C.: Zeitreihenmodelle, 2. Aufl., München u. a. 1995
- Poddig Th. u.a.: Statistik, Ökonometrie, Optimierung, 2. Aufl., Bad Soden 2001 oder neuere Auflage